working solution
This commit is contained in:
parent
01dd080a44
commit
fabf2cf56d
87
README.md
Normal file
87
README.md
Normal file
@ -0,0 +1,87 @@
|
||||
# AlgoInvest&Trade
|
||||
|
||||
Choix optimal parmi une liste d'actions
|
||||
|
||||
## Introduction
|
||||
|
||||
Ces instructions vous permettent de :
|
||||
- récupérer le programme,
|
||||
- d'installer l'environnement nécessaire à son exécution,
|
||||
- de l'exécuter,
|
||||
- d'en connaitre le résultat
|
||||
|
||||
|
||||
### Pré-requis
|
||||
|
||||
```
|
||||
paquets : python 3.11, python3.11-venv, git
|
||||
modules : python requests, BeautifulSoup, csv, os
|
||||
```
|
||||
|
||||
### Installation
|
||||
|
||||
Voici les étapes à suivre pour avoir un environnement d'exécution opérationnel :
|
||||
|
||||
créer l'environnement virtuel
|
||||
|
||||
```
|
||||
python3.11 -m venv env
|
||||
source env/bin/activate
|
||||
```
|
||||
cloner le dépôt, aller dans le bon dossier
|
||||
```
|
||||
git clone https://mcstn.fr/gitea/Yann/Projet2.git
|
||||
cd Projet2/rendu
|
||||
```
|
||||
installer les modules
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Exécution
|
||||
|
||||
exécuter la commande :
|
||||
```
|
||||
python3 main.py
|
||||
```
|
||||
|
||||
## Résultat
|
||||
|
||||
Les fichiers sont placés dans un répertoire "resultat"
|
||||
|
||||
Le programme récupère les catégories sur la page d'accueil de l'URL, puis, pour chaque catégorie :
|
||||
1. affiche la catégorie traitée, le nombre de catégories restantes, de livres présents, traités au total et restants
|
||||
2. crée un dossier du nom de la catégorie, y enregistre les images des livres nommées en fonction du titre
|
||||
3. crée un fichier csv au nom de la catégorie, avec :
|
||||
- product_page_url
|
||||
- universal_ product_code (upc)
|
||||
- title
|
||||
- price_including_tax
|
||||
- price_excluding_tax
|
||||
- number_available
|
||||
- product_description
|
||||
- category
|
||||
- review_rating
|
||||
- image_url
|
||||
|
||||
```
|
||||
$ time python3.11 main.py
|
||||
1000 à traiter répartis en 50 catégories.
|
||||
|
||||
[ ... ]
|
||||
|
||||
Traitement terminé.
|
||||
|
||||
real 20m17,783s
|
||||
user 4m30,695s
|
||||
sys 0m3,172s
|
||||
```
|
||||
## Auteur
|
||||
|
||||
Yann <yann@needsome.coffee>
|
||||
|
||||
|
||||
|
||||
## License
|
||||
|
||||
N/A
|
@ -1,13 +1,5 @@
|
||||
import csv
|
||||
|
||||
|
||||
def powerset(itemList):
|
||||
result = [[]]
|
||||
for item in itemList:
|
||||
newsubsets = [subset + [item] for subset in result]
|
||||
result.extend(newsubsets)
|
||||
return result
|
||||
|
||||
def listFromFile(csv_file):
|
||||
"""
|
||||
get data from a csv file and :
|
||||
@ -22,61 +14,69 @@ def listFromFile(csv_file):
|
||||
liste.pop(0)
|
||||
for item in liste:
|
||||
item[1] = int(item[1])
|
||||
item[2] = float(item[2].strip("%"))
|
||||
item[2] = item[1] * float(item[2].strip("%")) / 100
|
||||
return liste
|
||||
|
||||
def splitActions(actionList):
|
||||
def powerset(itemList):
|
||||
"""
|
||||
split list in two parts, just in case we need to divide the operation for
|
||||
more efficiency
|
||||
returns a tuple with two lists
|
||||
Generate every subset (combination) for a given list
|
||||
:param itemList: a list of items
|
||||
:return: a list of combinations(lists)
|
||||
"""
|
||||
liste1 = []
|
||||
liste2 = []
|
||||
for i in range(len(actionList)):
|
||||
if (i < 10):
|
||||
liste1.append(actionList[i])
|
||||
if (i >= 10):
|
||||
liste2.append(actionList[i])
|
||||
return (liste1, liste2)
|
||||
result = [[]]
|
||||
for item in itemList:
|
||||
newsubsets = [subset + [item] for subset in result]
|
||||
result.extend(newsubsets)
|
||||
return result
|
||||
|
||||
def selectActions(actionList, max):
|
||||
def transformData(dataset):
|
||||
"""
|
||||
Transform in a list of dict with computed values as gain, ratio
|
||||
Sorted by gain
|
||||
:param dataset: list of items
|
||||
:return: a sorted list of dict
|
||||
"""
|
||||
tmpset = [{'nom': x[0], 'cout': x[1],
|
||||
'rendement': x[2],
|
||||
'gain': x[1] * x[2] / 100,
|
||||
'ratio1': x[2] / x[1],
|
||||
'ratio2': (x[1] * x[2] / 100) / x[1]}
|
||||
for x in dataset if
|
||||
x[1] > 0.0 and x[2] > 0.0]
|
||||
|
||||
return sorted(tmpset, key=lambda x: x['gain'], reverse=True)
|
||||
|
||||
def selectActions(actionList, maximal_cost):
|
||||
"""
|
||||
:param actionList: takes a list of combinations and a max
|
||||
:return: a list of selected combinations where cost is under max
|
||||
"""
|
||||
best = []
|
||||
best2 = []
|
||||
for i in actionList:
|
||||
cout = 0
|
||||
rendement = 0
|
||||
cost = 0
|
||||
gain = 0
|
||||
for action in i:
|
||||
cout += action[1]
|
||||
rendement += action[2]
|
||||
if cout < int(max):
|
||||
best.append((rendement, cout, i))
|
||||
best2.append(i)
|
||||
return best, best2
|
||||
cost += action[1]
|
||||
gain += action[2]
|
||||
if cost < int(maximal_cost):
|
||||
best.append((gain, cost, i))
|
||||
|
||||
sortedBest = sorted(best, key=lambda k: k[0], reverse=True)
|
||||
|
||||
return sortedBest.pop(0)
|
||||
|
||||
|
||||
|
||||
actions = listFromFile("/home/b/Documents/OCR/projet7/actions.csv")
|
||||
powerActions = powerset(actions)
|
||||
selectedActions, selected = selectActions(powerActions, 500)
|
||||
power_actions = powerset(actions)
|
||||
selected_actions = selectActions(power_actions, 500)
|
||||
|
||||
print("Longueur de la liste d'actions:", len(actions))
|
||||
print("Nb de combinaisons:", len(powerActions))
|
||||
print("Nb de combinaisons au cout inferieur à 500:", len(selectedActions))
|
||||
print("Nombre d'actions:", len(actions))
|
||||
print("Nb de combinaisons:", len(power_actions))
|
||||
|
||||
#tri des actions sur le rendement
|
||||
best_sorted = sorted(selectedActions, key=lambda k: k[0], reverse=True)
|
||||
best2 = sort(selected, key=lambda k:[])
|
||||
#print("\nfive last sorted :")
|
||||
#for i in range(len(best_sorted)-1, len(best_sorted)-10, -1):
|
||||
# print("set", i, ":", best_sorted[i])
|
||||
#print(f"Rendement: {sum(x[2][1] * x[2][2]/100 for x in best_sorted[0])}")
|
||||
print(selected[1])
|
||||
print("Meilleur rendement:", best_sorted[0][0], "%")
|
||||
print("Actions sélectionnées:")
|
||||
for action in best_sorted[0][2]:
|
||||
print(f"Nom: {action[0]}, Cout: {action[1]}, Rendement: {action[2]}%")
|
||||
print("Gain: %.2f €" % selected_actions[0])
|
||||
print("Cout:", selected_actions[1], "€")
|
||||
|
||||
print("Actions sélectionnées:", selected_actions[2:])
|
||||
|
||||
|
89
optimized.py
Normal file
89
optimized.py
Normal file
@ -0,0 +1,89 @@
|
||||
import csv
|
||||
|
||||
|
||||
def listFromFile(csv_file):
|
||||
"""
|
||||
Extract and format data from file(csv)
|
||||
:param csv_file: full path
|
||||
:return: a list of items
|
||||
"""
|
||||
liste = []
|
||||
with open(csv_file) as file:
|
||||
data = csv.reader(file)
|
||||
for i in data:
|
||||
liste.append(i)
|
||||
liste.pop(0)
|
||||
for item in liste:
|
||||
item[1] = float(item[1])
|
||||
item[2] = float(item[2])
|
||||
return liste
|
||||
|
||||
def transformData(dataset):
|
||||
"""
|
||||
Transform in a list of dict with computed values as gain, ratio
|
||||
Sorted by gain
|
||||
:param dataset: list of items
|
||||
:return: a sorted list of dict
|
||||
"""
|
||||
tmpset = [{'nom': x[0], 'cout': x[1],
|
||||
'rendement': x[2],
|
||||
'gain': x[1] * x[2] / 100,
|
||||
'ratio1': x[2] / x[1],
|
||||
'ratio2': (x[1] * x[2] / 100) / x[1]} for x in dataset if
|
||||
x[1] > 0.0 and x[2] > 0.0]
|
||||
|
||||
return sorted(tmpset, key=lambda x: x['gain'], reverse=True)
|
||||
|
||||
def sacADosFloat(actions, maximum_cost):
|
||||
"""
|
||||
Use dynamic approach
|
||||
:param actions: a list of dict with minimum key as cost and gain
|
||||
:param maximum_cost: the constraint, our max cost
|
||||
:return: maximum gain: int, selected items: list
|
||||
"""
|
||||
n = len(actions)
|
||||
table = [[0.0 for x in range(int(maximum_cost) + 1)] for x in range(n + 1)]
|
||||
|
||||
# Dynamic programing table
|
||||
for i in range(n + 1):
|
||||
for w in range(int(maximum_cost) + 1):
|
||||
if i == 0 or w == 0:
|
||||
table[i][w] = 0.0
|
||||
elif actions[i-1]['cout'] <= w:
|
||||
table[i][w] = max(actions[i-1]['gain'] + table[i-1][int(w-actions[i-1]['cout'])], table[i-1][w])
|
||||
else:
|
||||
table[i][w] = table[i-1][w]
|
||||
|
||||
# Select
|
||||
w = maximum_cost
|
||||
selected_actions = []
|
||||
for i in range(n, 0, -1):
|
||||
if table[i][int(w)] != table[i-1][int(w)]:
|
||||
selected_actions.append(actions[i-1])
|
||||
w -= actions[i-1]['cout']
|
||||
|
||||
return table[n][int(maximum_cost)], selected_actions
|
||||
|
||||
|
||||
|
||||
actions = transformData(listFromFile("/home/b/Documents/OCR/projet7/ph3/dataset1_Python+P7.csv"))
|
||||
actions2 = transformData(listFromFile("/home/b/Documents/OCR/projet7/ph3/dataset2_Python+P7.csv"))
|
||||
|
||||
|
||||
|
||||
maximum_cost = 500
|
||||
|
||||
maximum_gain1, selection1 = sacADosFloat(actions, maximum_cost)
|
||||
maximum_gain2, selection2 = sacADosFloat(actions2, maximum_cost)
|
||||
|
||||
print("\nDATASET 1")
|
||||
print(f"Cout: {sum(x['cout'] for x in selection1):.2f}")
|
||||
#print(f"Rendement: {sum((x['cout']*x['rendement']/100)for x in actions_selectionnees):.2f}")
|
||||
print("Gain: %.2f" % maximum_gain1)
|
||||
print(f"Actions sélectionnées: {[x['nom'] for x in selection1]}")
|
||||
|
||||
print("\nDATASET 2")
|
||||
print(f"Cout: {sum(x['cout'] for x in selection2):.2f}")
|
||||
#print(f"Rendement: {sum((x['cout']*x['rendement']/100)for x in actions_selectionnees2):.2f}")
|
||||
print("Gain: %.2f" % maximum_gain2)
|
||||
print(f"Actions sélectionnées: {[x['nom'] for x in selection2]}")
|
Loading…
x
Reference in New Issue
Block a user