import csv MAX_COST = 500 DATASET1 = "dataset1_Python+P7.csv" DATASET2 = "dataset2_Python+P7.csv" DATASET0 = "Liste+dactions+-+P7+Python+-+Feuille+1.csv" def listFromFile(csv_file): """ Extract and format data from file(csv) :param csv_file: full path :return: a list of items """ liste = [] with open(csv_file) as file: data = csv.reader(file) for i in data: liste.append(i) liste.pop(0) for item in liste: item[1] = float(item[1]) if item[2][-1] == "%": item[2] = item[2].strip("%") item[2] = float(item[2]) return liste def transformData(dataset): """ Transform in a list of dict with computed values as gain, ratio Sorted by gain :param dataset: list of items :return: a sorted list of dict """ tmpset = [{'nom': x[0], 'cout': x[1], 'rendement': x[2], 'gain': x[1] * x[2] / 100, 'ratio1': x[2] / x[1], 'ratio2': (x[1] * x[2] / 100) / x[1]} for x in dataset if x[1] > 0.0 and x[2] > 0.0] return sorted(tmpset, key=lambda x: x['gain'], reverse=True) def get_results(filepath, maximum, nbr): """ load, transform data then run the algorithm and print results :param filepath: full path to csv :param maximum: maximum cost :param nbr: set number :return: print results """ action_list = transformData(listFromFile(filepath)) maximum_gain, selection = sacADosFloat(action_list, maximum) print("\nDATASET", nbr) print(f"Cost: {sum(x['cout'] for x in selection):.2f} €") print("Profit: %.2f €" % maximum_gain) print(f"Shares : {[x['nom'] for x in selection]}") def sacADosFloat(actions, maximum_cost): """ Use dynamic approach :param actions: a list of dict with minimum key as cost and gain :param maximum_cost: the constraint, our max cost :return: maximum gain: int, selected items: list """ n = len(actions) table = [[0.0 for x in range(int(maximum_cost) + 1)] for x in range(n + 1)] # Dynamic programing table for i in range(n + 1): for w in range(int(maximum_cost) + 1): if i == 0 or w == 0: table[i][w] = 0.0 elif actions[i-1]['cout'] <= w: table[i][w] = ( max( actions[i-1]['gain'] + table[i-1][int(w-actions[i-1]['cout'])], table[i-1][w] ) ) else: table[i][w] = table[i-1][w] # Selection w = maximum_cost selected_actions = [] for i in range(n, 0, -1): if table[i][int(w)] != table[i-1][int(w)]: selected_actions.append(actions[i-1]) w -= actions[i-1]['cout'] return table[n][int(maximum_cost)], selected_actions def main(): # get_results(DATASET0, MAX_COST, 0) get_results(DATASET1, MAX_COST, 1) get_results(DATASET2, MAX_COST, 2) if __name__ == '__main__': main()