Projet7/optimized.py
2025-04-01 17:52:33 +02:00

110 lines
3.0 KiB
Python

import csv
MAX_COST = 500
DATASET1 = "dataset1_Python+P7.csv"
DATASET2 = "dataset2_Python+P7.csv"
DATASET0 = "Liste+dactions+-+P7+Python+-+Feuille+1.csv"
def listFromFile(csv_file):
"""
Extract and format data from file(csv)
:param csv_file: full path
:return: a list of items
"""
liste = []
with open(csv_file) as file:
data = csv.reader(file)
for i in data:
liste.append(i)
liste.pop(0)
for item in liste:
item[1] = float(item[1])
if item[2][-1] == "%":
item[2] = item[2].strip("%")
item[2] = float(item[2])
return liste
def transformData(dataset):
"""
Transform in a list of dict with computed values as gain, ratio
Sorted by gain
:param dataset: list of items
:return: a sorted list of dict
"""
tmpset = [{'nom': x[0], 'cout': x[1],
'rendement': x[2],
'gain': x[1] * x[2] / 100,
'ratio1': x[2] / x[1],
'ratio2': (x[1] * x[2] / 100) / x[1]}
for x in dataset if x[1] > 0.0 and x[2] > 0.0]
return sorted(tmpset, key=lambda x: x['gain'], reverse=True)
def get_results(filepath, maximum, nbr):
"""
load, transform data then run the algorithm and print results
:param filepath: full path to csv
:param maximum: maximum cost
:param nbr: set number
:return: print results
"""
action_list = transformData(listFromFile(filepath))
maximum_gain, selection = sacADosFloat(action_list, maximum)
print("\nDATASET", nbr)
print(f"Cost: {sum(x['cout'] for x in selection):.2f}")
print("Profit: %.2f" % maximum_gain)
print(f"Shares : {[x['nom'] for x in selection]}")
def sacADosFloat(actions, maximum_cost):
"""
Use dynamic approach
:param actions: a list of dict with minimum key as cost and gain
:param maximum_cost: the constraint, our max cost
:return: maximum gain: int, selected items: list
"""
n = len(actions)
table = [[0.0 for x in range(int(maximum_cost) + 1)] for x in range(n + 1)]
# Dynamic programing table
for i in range(n + 1):
for w in range(int(maximum_cost) + 1):
if i == 0 or w == 0:
table[i][w] = 0.0
elif actions[i-1]['cout'] <= w:
table[i][w] = (
max(
actions[i-1]['gain'] +
table[i-1][int(w-actions[i-1]['cout'])],
table[i-1][w]
)
)
else:
table[i][w] = table[i-1][w]
# Selection
w = maximum_cost
selected_actions = []
for i in range(n, 0, -1):
if table[i][int(w)] != table[i-1][int(w)]:
selected_actions.append(actions[i-1])
w -= actions[i-1]['cout']
return table[n][int(maximum_cost)], selected_actions
def main():
# get_results(DATASET0, MAX_COST, 0)
get_results(DATASET1, MAX_COST, 1)
get_results(DATASET2, MAX_COST, 2)
if __name__ == '__main__':
main()